List the x - and y -intercepts and test for symmetry.
9. $x^{2}-9 y^{2}=9$
10. How much water must be evaporated from 64 ounces of a 2% salt solution to make a 10% salt solution?
11. A function g is defined by $g(x)=\frac{\mathrm{A}}{x}+\frac{8}{x^{2}}$ If $g(-1)=0$, find A.

In problem 12, find the following for each function.
(a) $f(-x)$
(b) $-f(x)$
(c) $f(x+2)$
(d) $f(x-2)$
12. $f(x)=\frac{x^{2}}{x+2}$

In problem 13, determine (algebraically) whether the function is even, odd or neither.
13. $g(x)=\frac{4+x^{2}}{1+x^{4}}$

In problem 14, find the domain of each function.
14. $f(x)=\frac{3 x^{2}}{x-2}$
15. Given: $f(x)=1-3 x^{2}$ and $g(x)=\sqrt{4-x}$, find:
(a) $(f \circ g)(2)$
(b) $(g \circ f)(-2)$

In problems 10 to 12, use Descartes' Rule of Signs and the Rational Zeros Theorem to find all real zeros, then use the zeros to factor over the real numbers.
10. $f(x)=x^{3}-x^{2}-10 x-8$
11. $f(x)=4 x^{3}-4 x^{2}-7 x-2$
12. $f(x)=x^{4}+6 x^{3}+11 x^{2}+12 x+18$

Write each expression in problems 13 to 15 in the form a + bi.
13. $(8-3 i)+(-6+2 i)$
14. $\frac{4}{2-i}$
15. $(3-2 i)^{3}$

In problems 12 and 13, find the exact value of each expression. Do not use a calculator.
12. $4 \csc \frac{3 \pi}{4}-\cot \frac{-\pi}{4}$
13. $\frac{1}{\cos ^{2} 40^{\circ}}-\frac{1}{\cot ^{2} 40^{\circ}}$

In problem. 14, find the exact value of each of the remaining trigonometric functions.
14. $\tan \mathrm{A}=\frac{-2}{3}, 90^{\circ}<\mathrm{A}<180^{\circ}$
15. Graph $y=3 \cos x+3$
10. Find the x - and y -intercepts of $\mathrm{f}(\mathrm{x})=\frac{4-x}{x}$, then determine whether the graph of f touches or crosses the x -axis at the x -intercept.
11. Solve $3 x^{4}+3 x^{3}-17 x^{2}+x-6=0$
12. Write $2(1+i)-3(2-3 i)$ in the form $a+b i$.
13. $\mathrm{F}(\mathrm{x})=\sqrt{x-2}$ is one-to-one; find its inverse. Find the domain and range of f and f^{-1}.
14. Write $\log \left(x^{2}-9\right)-\log \left(x^{2}+7 x+12\right)$ as a single logarithm.
15. Find y as a function of x; the constant C is a positive number. $\ln (y-1)+$ $\ln (y+1)=-x+C$
16. Solve $2^{x+1}\left(8^{-x}\right)=4$
17. Convert 15° to radians.
18. Convert $\frac{2 \pi}{3}$ to degrees.
19. Find the exact value of $\cos \frac{\pi}{3}+\sin \frac{\pi}{3}$. Do not use a calculator.
20. Find the exact value of the remaining trigonometric functions if $\cos \mathrm{A}=\frac{-3}{5}$ and $\sin \mathrm{A}<0$.

In problems 10 to 12 , find the remaining angle(s) and side(s) of each triangle if it (they) exists. If no triangle exists, say, "No triangle".
10. $\alpha=10^{\circ}, \gamma=40^{\circ}$, side $c=2$.
11. Side $a=10$, side $b=7$, side $c=8$.
12. Side $a=1$, side $b=2, \gamma=60^{\circ}$.

In problems 13 and 14 , find the area of each triangle.
13. Side $b=5$, side $c=4, \alpha=20^{\circ}$
14. Side $a=3$, side $b=2$ and side $c=2$.
15. Find the height of a building that is 80 feet away from a point on the ground, when this point on the ground makes an angle of 25° with the top of the building.

In problem 7, the vector v is represented by the directed line segment PQ. Write v in the form $a i+b j$ or in the form $v=a+b j+c k$, and find $\|v\|$.

$$
\text { 7. } P=(-3,1) ; Q=(4,-2)
$$

In problems 8 to 10 , identify each equation. If it is a parabola, give its vertex, focus, and directrix; if it is an ellipse, give its center, vertices, and foci; if it is a hyperbola, give its center, vertices, foci, and asymptotes.
8. $16 x^{2}=y$
9. $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
10. $\frac{\mathrm{y}^{2}}{25}-\mathrm{x}^{2}=1$

In problem 11, solve the system of equations using substitution or elimination. If the system has no solution, say that it is inconsistent.

$$
\text { 11. } \begin{array}{ll}
x-3 y+5=0 \\
& 2 x+3 y-5=0
\end{array}
$$

In problem 12, find the inverse of the matrix (if there is one) algebraically. If there is not an inverse, say that the matrix is singular.
12. $\left|\begin{array}{lll}3 & 1 & 2\end{array}\right|$
$\left.\begin{array}{lll}\mid 3 & 2 & -1\end{array} \right\rvert\,$
$\begin{array}{lll}11 & 1 & 1\end{array}$
13. Solve the following system using matrices. If the system has no solution, say that it is inconsistent.
$2 x+y+z=5$
$4 x-y-3 z=1$
$8 x+y-z=5$
14. Find the determinant of $\left.\begin{array}{ll}\mid-4 & 0\end{array} \right\rvert\,$
15. Use Cramer's Rule, if applicable, to solve:

$$
x-3 y=-5
$$

$$
2 x+3 y=5
$$

Find the indicated term in each sequence.
9. 8th term of $1,-1,-3,-5, \ldots$
10. 11th term of $1,2,4,8, \ldots$

Find a general formula for each arithmetic sequence.
11. 8th term is $-20 ; 17$ th term is -47
12. 12th term is $30 ; 22$ nd term is 50
10. Write 3-2i in polar form.
11. Write $4\left[\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right]$ in the standard form $\mathrm{a}+\mathrm{bi}$.
12. Find $z w$ and $\frac{z}{w}$. Leave your answers in polar form.

$$
\begin{aligned}
& z=4\left(\cos 50^{\circ}+i \sin 50^{\circ}\right) \\
& w=\cos 340^{\circ}+i \sin 340^{\circ}
\end{aligned}
$$

13. Write $(2-2 i)^{8}$ in the standard form $a+b i$.
14. Write \mathbf{v} in the form $a \mathbf{i}+b \mathbf{j}$ or in the form $\mathrm{v}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$, and find $\|\mathbf{v}\|$. $P=(4,7,0) ; Q=0,5,6)$
15. Identify $3 y^{2}-x^{2}=9$. If it is a parabola, give its vertex, focus and directrix. If it is an ellipse, give its center, vertices, and foci. If it is a hyperbola, give its center, vertices, foci and asymptotes.
16. Solve the following system of equations using elimination or substitution:
$2 x-y=-1$
$x+\frac{1}{2} y=\frac{3}{2}$
17. Find the inverse of $|-3| \mid$
|-6 2 |
